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Abstract—A central question in neuroscience is how the brain
reacts to real world sensory stimuli. Naturalistic and complex
(e.g. movie) stimuli are increasingly used in empirical research
but their analysis often relies on considerable human efforts to
label or extract stimulus features. Here we present data-driven
analysis strategies that help to obtain interpretable results from
multisubject neuroimaging data when complex movie stimuli
are used. These analyses a) enable localization and visualization
of brain activity using standard statistical parametric maps in
the subspace of brain activity shared between subjects and b)
facilitate interpretation of intersubject correlations. We show
experimental results obtained from 50 subjects.

Index Terms—Multisubject Neuroimaging, Hyperscanning,
Canonical Correlation Analysis, CCA, Intersubject Correlation

I. INTRODUCTION

EALISTIC stimuli have become increasingly popular in

neuroimaging, see e.g. [L], [3]. Many of the analysis
approaches to neuroimaging data acquired during stimulation
with naturalistic stimuli however require intensive human
work, such as for the design of appropriate filters for feature
extraction [2f] or labeling of objects and scenes [3]. For large
scale analyses this approach quickly becomes infeasible. Un-
supervised analysis methods, which do not require manually
created labels or stimulus regressors, have proven useful in this
setting. These methods allow to find structure in data sets in
an explorative fashion. Supervised methods usually find those
aspects of brain activity that correlate well with a regressor.
Which aspects of brain activity they find depends on the
objective function of the analysis method. Many approaches
find linear approximations of the data matrix such that rows or
columns (corresponding to time and space of the brain data)
have maximal variance or are statistically independent from
each other. Another useful criterion to optimize is the shared
covariance or correlation between pairs of subjects, that is to
maximize intersubject correlations. Intersubject correlations
are correlations of neuroimaging time series between pairs
of subjects participating in the same experiment (exposed
to the same stimulus or involved in direct interaction). The
hypothesis is that finding locations or networks that exhibit
large intersubject correlations allows to find those aspects
of brain activity that are shared between multiple subjects.
While early approaches were restricted to mass-univariate
correlation coefficients [1], later work made use of multivariate
methods in order to analyze networks of activity, rather
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than single locations in the brain [4]. If the objective is
to find the most correlated subspaces in the brain imaging
data of multiple subjects, the most straightforward analysis
is canonical correlation analysis (CCA) [5]. The rationale for
multisubject neuroimaging studies is illustrated in Figure
CCA assumes that any variance in the data that is shared
amongst all subjects is reflecting brain processes associated
with a complex stimulus. For a more formal definition see
section In the following we will refer to analyses that
are based on intersubject correlations as ISC methods and to
analyses based on the multivariate extension as canonical ISC
or CISC approaches.

One major problem with ISC-based approaches is that the
results can be difficult to interpret. Often it is necessary to
apply extensive pre- and postprocessing to the data, especially
when working with mass-univariate approaches: the strongest
shared activations (among subjects) are typically rather un-
specific. For instance in visual paradigms all visual cortices
are activated. If one is interested in more specific aspects
of brain activation, these unspecific activations have to be
subtracted [[1]. Here we present two simple ways of extending
(O)ISC based analyses that allow for a better interpretation
of brain activation shared amongst multiple subjects. The first
approach is a combination of the results presented in [6] to the
latent variable model estimated by multiway CCA and large-
scale data mining techniques as presented in [7]. This allows
to visualize and interpret the common networks and localize
differences in experimental conditions. The second approach
is based on multivariate decoding of stimulus conditions from
intersubject correlations. This allows to draw conclusions
about the nature of changes in intersubject synchronization, for
instance by relating these changes to single scenes of a movie
as done in the mass-univariate reverse correlation approach in
[L] or the multivariate approach in [4].

We present preliminary results obtained in two studies with
25 subjects each. We investigated the shared brain activation in
response to naturalistic movie stimuli, which were shown with
stereoscopic depth (3D condition) and without this information
(2D condition). We found that canonical ISC analysis can
reliably detect and localize those cortical networks that share
activation across subjects — per condition and differentially
between conditions. In addition it can identify movie scenes
in which this shared activation carries information about the
stimulus condition. In our setting standard SPM type mass-
univariate analyses with the stimulus condition as regressor
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Fig. 1. The model underlying canonical intersubject correlation studies: the
same complex stimulus (such as a movie) is presented to a group of subjects.
A good approximation of the brain activity elicited by the stimulus is that brain
activity that is shared amongst all subjects. This aspect of brain activation is
extracted by multiway CCA, which finds a subspace Wy of each subject’s
brain activation X s such that the pairwise canonical correlation across subjects
is maximized.

failed to capture significant differences between conditions.
Furthermore, combining our results with data-driven analyses
of a large body of neuroimaging studies [[7] we can map the
localization results to psychological concepts associated with
the differential activation of the networks found. Importantly
the two proposed approaches are fully automatized and do not
require human interaction for feature extraction or labelling.

II. METHODS

In two experiments, 50 subjects (experiment 1: 13 female,
12 male, age 26.743.5 years, range 21-35; experiment 2: 12
female, 13 male, age 26.6+5.1 years, range 19-38) were shown
movie clips of varying content while we recorded their brain
activity using fMRI. Each participant saw each movie with
and without stereoscopic depth information. Participants were
naive with respect to content and category of the stimuli,
had normal or corrected-to-normal vision, and could perceive
stereoscopic depth cues.

A. Stimuli

Stimuli 1-14 (experiment 1) were videos of 42.5 s length
each: content length was 40.5 s, preceded by 2 s of black
screen without fixation cross for visual adjustment and to avoid
distortions induced by codec and presentation software. Stim-
uli 15-17 (experiment 2) were movie clips of 120 s length. All
videos were presented at 30 frames per second, resulting in a
total number for each stimulus of 1275 frames at size 768 x576
pixels on each eye. The videos were acquired over the internet
and video content varied from, for example, a calm time lapse
montage of a blossoming flower (http://www.stereomaker.net/
sample/index.html, accessed March 20, 2013) to a rapid car
rallye, filmed by onboard cameras (http://alesco.cz/, accessed
December 8, 2012; see Table E[) Videos were edited using Vir-
tualDub 1.9.11 (http://www.virtualdub.org/) and encoded using
the XVID codec. Every movie was shown twice: In the 3D
condition, stereoscopic depth was induced by presenting the
two binocular perspectives of the scene to the corresponding
eyes, while in the 2D condition, the same stimulus (left eye)

TABLE I
DESCRIPTION OF THE MOVIE CONTENT.
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Description

Ride through a city in an oldtimer car

Time lapse movie of a pink flower opening and closing its bloom
Flock of dolphins swimming through underwater plants

Police sheriff and woman exploring a dark alley

Skateboarders doing tricks in a skateboard hall

Mountainbikers jumping over gaps in a dirt course

Three people fishing and exchanging money, two leaving in a canoo
Race car rallye through the woods

Roller coaster ride

10 Scenes from a Graffiti and BMX event

11 Surfer standing on his board and riding a wave

12 Individual manatee, then a flock of manatees under water

13 People jumping over a cliff in wingsuit costumes

14 Skydive with the jump from the plane, free fall, and landing

15 Race car rallye through the woods (longer version)

16 Fight between mantis shrimp and octopus

17 Walk through cherry blossoms
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was delivered to both eyes. As stimulus order was pseudo-
randomized for each participant, novelty effects were balanced
and stimulus characteristics were controlled for. The latter
involve statistical properties like brightness, contrast, color, or
motion but also more subjective stimulus features like personal
preference for the movie content. Videos were interspersed
with 20 s blocks of fixation and the first video presentation
was preceded by a 30 s baseline fixation block. Presentation
software version 14.9 (Neurobehavioral Systems, Inc., Albany,
CA), a stereo adapter, and MR-compatible video goggles with
a native resolution of 800x600 pixels and a color depth
of 32 bit (VisualSystem, NordicNeuroLab; Bergen, Norway)
were used for stimulus presentation. Careful adjustment of
the goggle system and its built-in dioptric correction prior to
scanning ensured optimal stimulus visibility.

B. Data acquisition

MR imaging in two separate experiments was performed on
two different Siemens TIM Trio 3T MR scanners with standard
12-channel head coils (Siemens Medical Solutions, Erlangen,
Germany). For each participant, a T;-weighted image was
acquired as high-resolution anatomical reference. T -weighted
gradient-echo echo-planar images (EPI) were collected for
whole-brain functional imaging with voxels of 2.5x2.5x2.5
mm? and 2x2x4 mm? in experiments 1 and 2, respectively.

C. Imaging data preprocessing

Image preprocessing and statistical analyses were carried
out using SPM8 (Wellcome Trust Centre for Neuroimaging,
London, UK; http://www.fil.ion.ucl.ac.uk/spm/) and Matlab
(MathWorks, Natick, MA, USA). Image series were inspected
for excessive head movements but no subject exceeded the
threshold of 1 mm/7R. After realignment to the first image
and T coregistration onto the mean EPI, rigidly aligned tissue-
class images for gray and white matter and cerebrospinal fluid
were generated from the coregistered 77 images employing
the “New Segment” function. Functional images were then
normalized to MNI space and smoothed with a Gaussian
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kernel of 6 mm FWHM using the normalization function of
the DARTEL toolbox. For further analysis we extracted the
grey matter voxels using the respective template contained in
SPMB8 after binarizing it with a threshold of .5.

D. fMRI data analysis

In order to find brain networks of activation that are
common to all subjects, we used canonical correlation analysis
(CCA) [5]. The assumption of CCA is that a set of K networks
of brain activation for each subject s € {1,2,...,5} can be
modeled as a linear subspace Wy = [ws1, Ws2, ..., Wsk| €
RY*K (V' denotes the number of voxels) of the multivariate
voxel time series X, € RY*T (T denotes the number of
fMRI volumes). The column vectors ws to wsx € RY
are called canonical directions; the subscript s refers to a
specific subject. We can obtain the time courses, also called
canonical components, of these brain networks for subject s
by computing W, X,. The goal of CISC analysis is to find
canonical directions Wy such that the sum over all pairwise
correlations (for all pairs of subjects) between the canonical
components is maximized, with the constraint that the time
courses of two different networks ws,, and w,, be uncorrelated
for all subjects s and all components u # v. The objective
function of CCA can be formulated as
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where I is the identity matrix. In general if there are
N multivariate variables and corresponding centered data
matrices { X1, Xo, ..., Xy}, the basis vectors of the canonical
subspace of each variable {W;, W5, ..., Wx} can be found
by solving the generalized eigenvalue problem
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where C;; denotes the covariance matrix between the ith
and jth variable. For a more in-depth treatment of multi-
way CCA objectives see e.g. [8]. The dimensionality of the
data was reduced using PCA to keep only as many principal
components as are needed to cover 99.9 percent of the variance
in all voxels. This resulted in 20 to 30 principal components.
We performed all analyses in a leave-one-movie-out cross-
validation manner. For each movie, we estimated the PCA
subspace as well as the canonical directions on all but this
movie (the training data set). The canonical components
for the fMRI data recorded during the held-out movie were
computed by projecting them onto the PCA space and the
canonical directions computed on the training data set. The

cross-validated CISCs reported here are computed on these
canonical components.

E. Localization of differential CISC strength

The spatial activation pattern A, of a canonical component
can be obtained by

A, =WIX, X[ (3)

For a detailed derivation see [6]. Each column of the ma-
trix A, € RV*K contains the spatial pattern of activation
corresponding to one canonical component. For better inter-
pretability the patterns were related to psychological concepts
using the decode function of the online database neurosynth
(version 0.3.0 dev) [7]. In an automatized and unbiased
manner, this function assesses the spatial similarity between
an input image and all concept-based meta-analysis maps in its
database. If different stimulus conditions are available, such as
repeated presentations of the same stimulus with and without
stereoscopic depth, subtle differences in activation patterns can
be found using standard mass-univariate t-tests.

FE. Classification of stimulus condition by CISCs

In order to investigate what information about the stimulus
is contained in the intersubject correlations, we decoded the
stimulus condition from the correlations in common networks.
If we were to investigate one component at a time, we could
employ a standard univariate test, but it is more likely that the
relevant information is spread across common brain networks.
We predicted stimulus condition (2D or 3D) from CISC values
in a leave-one-movie-out cross-validation. For each movie, we
trained a regularized linear discriminant classifier (LDA) on
the CISC values of the 10 most strongly synchronized brain
networks computed during all but one movie. LDA finds the
normal vector wrps4 € R¥ of a linear decision boundary by

wrpa = (1= NS +Mwl) ™ (ug — p-) 4)

where 4 and p_ are the means of the positive and negative
class, respectively, S is the sum of the within-class covariance
matrices, A is a regularization parameter that is estimated using
the analytical solution provided by [9] and v is the average
eigenvalue. For the prediction of stimulus conditions, the
positive class was the 3D condition and the negative class was
the 2D condition. In order to obtain continous accuracy values
we multiplied the LDA output values by their true labels,
such that high positive values indicate correct predictions and
negative values incorrect predictions. These outputs can then
be averaged across all stimulus conditions and all stimulus
repetitions.

III. RESULTS

Inspection of the activation patterns for the top 5 canonical
components, computed by eq. showed that the common
brain networks are primarily located in sensory and par-
ticularly in visual regions — as expected for movie stimuli
(without audio). Also the correlations of these patterns with
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Fig. 2. Clusters of significant contrast (3D>2D) between activation patterns
of canonical components computed on data (from experiment 1) of the 3D and
2D condition for first (red) and second (green) canonical component. Patterns
were compared in paired t-tests using SPMS8. Results were thresholded at
p<.005 and corrected for multiple comparisons (resulting in a whole-brain
correction threshold of p<.05) by determining individual cluster extent k
thresholds with the calculated intrinsic smoothness of the individual 7"-value
image, a cluster connection radius of 3 mm, and a 1000-iteration Monte
Carlo simulation, using AlphaSim as implemented in the REST Toolbox
1.8 (http://www.restfmri.net/). Using the decode function of neurosynth [7]
we recovered the most common psychological concepts associated with the
contrast activation patterns.

mentions of psychological concepts in the literature (retrieved
by neurosynth) reflect primarily visual functions (visual: 0.55,
object: 0.43, motion: 0.28, shape: 0.27). However this ac-
tivation pattern is not unspecific. The differential contrast
(3D>2D) between the activation patterns obtained from the
first two canonical components in the two stimulus conditions
shows significantly higher activations in the 3D condition,
see figure 2] We investigated how the strength of intersubject
correlations is related to single movie scenes by decoding the
stimulus condition (3D or 2D) from the CISC valuesﬂ An
example of this decoding approach is presented in figure[3] the
output of the LDA decoder (see eq. ) multiplied by the label
y € {—1,1} (indicating the stimulus condition) is computed
in sliding windows of 15 s (or 5 volumes) and aligned with
the movie scenes. This particular stimulus featured a mantis
shrimp, a colorful animal with remarkable characteristicsﬂ, that
none of our subjects had seen before, and an octopus being
attacked by the shrimp. In the scenes in which the mantis
shrimp appears for the first time (around 20 seconds after
movie onset) and when the shrimp stands up to fight the

IThe drawback of this approach is that the CISCs might decrease with
repeated movie presentations [4] — we did not find strong evidence for
this effect in our data but alternative stimulus presentation strategies could
counteract this effect, e.g. manipulating the stimulus condition within a movie.
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Fig. 3.  Decoding accuracy of depth (from experiment 2), multiplied by
stimulus label and averaged across condtions (shown are meansts.e.m.).
Decoding was performed on CISCs in 10 canonical components during a
movie showing a mantis shrimp fighting an octopus. No subject knew a
mantis shrimp before the experiment. During its first appearance and the fight,
decoding of depth cues from CISCs is significantly above chance.

octopus, the stimulus condition could be decoded reliably from
the CISC values. An interesting topic of future research is
to relate this increase in stimulus information to systematic
changes in intersubject synchronization.
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