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Abstract— Emotional arousal (EA) denotes a heightened 
state of activation that has both subjective and physiological 
aspects. The neurophysiology of subjective EA, among other 
mind-brain-body phenomena, can best be tested when subjects 
are stimulated in a natural fashion. Immersive virtual reality 
(VR) enables naturalistic experimental stimulation and thus 
promises to increase the ecological validity of research findings 
i.e., how well they generalize to real-life settings. In this study, 
45 participants experienced virtual rollercoaster rides while 
their brain activity was recorded using electroencephalography 
(EEG). A Long Short-Term Memory (LSTM) recurrent neural 
network (RNN) was then trained on the alpha-frequency (8-12 
Hz) component of the EEG signal (input) and the 
retrospectively acquired continuous reports of subjective EA 
(target). With the LSTM-based model, subjective EA could be 
predicted significantly above chance level. This demonstrates a 
novel EEG-based decoding approach for subjective states of 
experience in naturalistic research designs using VR.  

Keywords—subjective experience, neural decoding, 
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I. INTRODUCTION 
Emotional arousal (EA) is a “core affect” preparing an 

agent to respond to events in its environment [1]. With both 
subjective and physiological components, it is of central 
interest for the mind and brain sciences. The subjective and 
bodily aspects of EA are actively studied [2] – also under 
naturalistic conditions: McCall et al. [3] demonstrated that 
retrospective reports of EA correlate with peripheral 
physiological responses (here: heart rate, HR; skin 
conductance, SCR) during a naturalistic and immersive 
virtual reality (VR) experience. However, brain processes 
related to EA have only been tested in research paradigms 
that used relatively simplistic stimuli: For instance, an 
electroencephalography (EEG) study associated higher 
arousal, induced through pictures and music, with decreased 
alpha oscillatory power (8-12 Hz) over parietal brain regions 
[4]. To generalize such results to real-life settings (i.e., to 
increase their ecological validity), more complex and 
naturalistic research designs are required. To this aim, EEG – 
one of the most mobile neuroimaging techniques – can be 
combined with VR head-mounted displays (HMDs). Many 
classical EEG studies repeatedly present a stimulus in a trial-
by-trail design. By averaging neural responses over trials, 
they extract event-related potentials. By design, this creates 
an artificial experience for participants. To avoid this, we 
aimed to provide a continuous and coherent natural 

experience to extract relevant neural and subjective features 
of EA.  

In contrast to other deep learning models, Long Short-
Term Memory (LSTM) recurrent neural networks (RNNs) 
[5] are quick “learners” and thus a promising analysis 
technique for the continuous data recorded under naturalistic 
stimulation with VR to overcome the limitations of trial-by-
trial designs. Recently, LSTMs have been widely applied in 
the processing of complex time-sequential data, such as 
speech recognition [6] or video analysis [7]. However, 
despite their power to detect both short- and long-term 
dependencies in such time series, they have been rarely used 
for EEG data [8, 9].  

The goal of our study was to generalize previous findings 
on the neurophysiology of EA in the alpha-frequency band to 
more ecologically valid settings. Subjects underwent virtual 
rollercoaster rides while their EEG was recorded. They then 
continuously rated their previously experienced levels of EA 
while viewing a recording of their rides (cf. [3]). LSTM-
based models were then used for affective decoding, that is, 
to predict subjective EA from the EEG’s alpha-frequency 
components.  

II. METHODS 

A. Participants  
45 healthy participants (22 men, mean age: 23±4, range: 

20-32 years) were tested, of which 38 were analyzed (18 
men). Data of 5 participants were lost, 1 participant stopped 
the experiment and 1 violated inclusion criteria. Subjects 
were right-handed, had normal or corrected-to-normal vision, 
and reported no psychiatric or neurological history.  

B. Materials 
• EEG (sampled at 500 Hz, hardware-based low-pass 

filter at 131 Hz) was recorded with 30 active 
Ag/AgCl electrodes attached according to the 
international 10-20 system (actiCap and LiveAmp, 
Brain Products GmbH, Germany). Two additional 
electrodes captured eye movements. 

• HR and SCR were synchronously recorded 
(sampled at 500 Hz) with additional electrodes.  

• VR setup: HTC Vive HMD (HTC, Taiwan), with 
headphones, attached on top of the EEG cap using 
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cushions to avoid pressure artifacts. The two 
rollercoasters are commercially available [10].  

C. Experimental Procedure  
Participants had a 280-s VR experience of two 
rollercoasters (153 s, 97 s), including an intermediate 30-
s break (all three were considered part of one continuous 
experience). In a first condition, participants were 
instructed to keep their head straight to avoid movement-
related artifacts in the EEG data. In a second condition, 
they could move their head freely. In the subsequent 
rating phase, subjects saw a 2D recording of their 
experience on a virtual screen. While viewing the video, 
subjects recalled their EA and continuously reported it 
using a dial (Griffin PowerMate USB; sampling 
frequency: 50 Hz), with which they manipulated a 
vertical rating bar next to the video, ranging from low 
(0) to high (50) EA (cf. [3]). 

D. Data Preprocessing  
• The data (EEG, retrospective reports) were cropped 

by 5 s to avoid outliers related to the onset and 
offset of the virtual roller coaster rides. This resulted 
in time series of 270 s (HR and SCR data were not 
considered here). 

• Subjective reports were downsampled to 1 Hz and 
re-scaled to the [-1,1] range. For the binary 
classification, low and high arousal (see next 
section) were defined as lower and upper tercile of 
the ratings, respectively. Entries on the tercile 
boundaries were semi-randomly assigned, keeping 
the bins equal in size (n = 90). The middle bin was 
removed, resulting in 180 samples per subject. 

• EEG recordings were downsampled to 250 Hz. Pre-
processing was standardized and automatized with 
the PREP pipeline [11]. Independent components 
related to eye and head movements were removed 
using MARA [12].   

• The EEG signal was decomposed with spatio-
spectral decomposition (SSD) [13], which 
emphasizes the bandwidth of interest (here: alpha, 8-
12 Hz) while attenuating adjacent frequencies. This 
also reduces noise through muscle activation, which 
normally occurs in frequencies above the alpha 
range (i.e., ~20-300 Hz) [14].  

• We then used Source Power Comodulation (SPoC) 
[15], a supervised decomposition algorithm that 
maximizes the correlation between the target 
variable (here: ratings) and the time course of the 
power (here: in alpha) in time-sequential neural data. 
Training LSTMs (see next section) on supervised 
SPoC components aimed to set a performance 
benchmark proxy for affective decoding models 
trained on the purely alpha-informed, unsupervised 
SSD components.  

E. LSTM-based Neural Decoding Model 
An LSTM cell has the property to store and control 

relevant information of time series, as those of EEG. This 
feature was used to predict subjective states of EA from 
neural alpha-frequency components in two ways: i) a binary 

classification task (BCT), and ii) a continuous prediction task 
(ConT). The former aids the extraction of corresponding 
neural features by simplifying data into dichotomic targets. 
The latter was expected to be more demanding due to the 
more fine-grained temporal resolution. For each task, the 
best model hyperparameters (HPs) were found with a 
random search strategy [16] on a random subset of 10 
subjects. The model was constrained to maximally two 
LSTM layers followed by maximally two fully connected 
layers (FC). The pyramidal design (Fig. 1) constrains 
successive layers to be equal or smaller in size (range: 10-
100 nodes). Further HPs were the between-layer activation 
functions: rectified (ReLU) or exponential linear units (ELU) 
and different weight regularization methods (L1, L2) of 
various strengths (range:  0.0-1.44) that were added to the 
mean-squared error loss. The number (1-10) and selection of 
neural components as well as their transformation (width of 
the band-pass frequency filter, Hilbert alpha power 
extraction [17]) were also treated as HPs.  

Finally, for each subject’s dataset, separate models (SSD-
BCT, SSD-ConT, SPoC-BCT, SPoC-ConT) were trained 
with 10-fold cross-validation [18]. The LSTM was fed with 
mini-batches of size 9, where each sample corresponded to 
one second of the experience (sample size: NConT = 270, NBCT 
= 180). Consequently, the model ran over 250 data points of 
neural components before it would output its prediction for 
one second of experience (see Fig. 1). Weights were 
optimized with Adam [19]. At this stage, we restricted the 
analysis to the data from the non-movement condition, since 
head motion-related artifacts in the data could corrupt the 
development of the model. 

The LSTMs-based affective decoding model was 
implemented in the Python 3.5.1 package Tensorflow 1.4.1 
(Google Inc., USA). All scripts are available online [20]. 

 
Fig. 1 Model architecture: The LSTMs (1-2 layers) were fed with 1-s slices 
of EEG recordings. The last hidden state (hT) was channeled to the fully 
connected layer(s) (FC), which output the prediction through a tangens 
hyperbolicus (tanh). 

III. RESULTS 
For both approaches (BCT, ConT), the performances of 

SSD- and SPoC-trained models were compared.  
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A. Binary classification (BCT) 
• SSD-trained models: the mean accuracy to predict 

subjective ratings on the validation sets over all 
subjects was 0.634 (range: 0.514-0.816, sd = 0.068), 
which was significantly above chance level (perm3000 
p < 0.001). Fig. 2 shows one subject’s prediction 
model. 

• SPoC-trained models: the mean accuracy was 0.623 
(range: 0.499-0.879, sd = 0.077), which was also 
significantly above chance level (perm3000 p < 0.001).  

• LSTMs trained on SSD neural components did not 
differ significantly from LSTMs trained on SPoC 
components (perm3000 p = 0.554); hence, the 
benchmark proxy was reached. The accuracies also 
matched the results on the same dataset reported in 
[21], which used common spatial patterns (CSP) [22], 
a neural decoding algorithm primarily used for EEG-
based brain-computer interfaces.  

B. Continuous prediction (ConT) 
• SSD-trained models: the mean prediction accuracy 

on the validation sets over all subjects was 0.757 
(range: 0.677-0.825, sd = 0.036), which was 
significantly above the average-line accuracy (range: 
0.591-0.820, sd = 0.051), that is, the accuracy that the 
model would achieve when it only outputs the 
average rating per subject (perm3000 p < 0.001). Thus, 
the models could detect features in the neural data to 
decode subjective EA.  

• SPoC-trained models: the mean accuracy was 0.754 
(range: 0.679-0.826, sd = 0.035), which was also 
significantly above the average-line accuracy 
(perm3000 p < 0.001).  

• LSTMs trained on SSD neural components did not 
differ significantly from LSTMs trained on SPoC 
components (perm3000 p = 0.735); hence, the 
benchmark proxy was reached.  

 Across prediction approaches, different sets of HPs 
showed similar results. There was no clear trend neither for 
input transformations of neural data (choice of bandwidth 

filter, Hilbert power extraction) nor for between-layer 
activation functions nor for weight regularization methods 
being clearly beneficial for the final prediction accuracy on 
the validation set. However, more narrow networks with 
maximally three neural components tended to have higher 
accuracy rates. For both SSD- and SPoC-trained LSTMs, the 
best prediction outcomes were achieved on high-rank 
components. For SSD, the rank describes the strength of 
alpha information in the component. For SPoC, the rank 
describes the magnitude of comodulation between the target 
(here: rating) and the neural component.  

 In summary, all combinations of prediction tasks (SSD-
BCT, SSD-ConT, SPoC-BCT, SPoC-ConT) showed 
accuracies significantly above chance (BCT) or the average-
line accuracy level (ConT).  

IV. DISCUSSION 
In an immersive VR-EEG study with virtual 

rollercoasters, we induced EA in subjects to decode their 
(retrospectively rated) emotional experience from neural 
responses. We found that LSTM-based affective decoding 
models can extract features from neural input components 
that reflect the subjective experience of EA. LSTMs thus 
provide a suitable analytical approach for complex time 
series (e.g., brain activation measured using EEG) from 
naturalistic stimulation (e.g., using immersive VR). Such 
research designs are needed to increase the ecological 
validity of findings in the mind and brain sciences.  

We focused on neural features in the alpha-frequency 
range that were previously found to correlate negatively 
with arousal in less naturalistic experiments [4]. Although 
we here did not aim at a general understanding of neural 
oscillations during arousing experiences, this could be 
investigated by applying our decoding model (code at [20]) 
to other frequency bands. Since the LSTM was trained on 
neural features extracted with SSD and SPoC, the 
topological distribution of oscillations could be analyzed by 
reprojecting the corresponding filter matrices [23], as it was 
done with the CSP approach [21]. Our implementation 
would also allow training the LSTM model with other 
physiological modalities such as HR and SCR (cf. [3]). 
However, different signals (e.g., HR and neural recordings) 
usually have different temporal properties, which might 
require adapting the HPs and lead to computationally 
expensive HP searches. Systematically analyzing the 
performance as a function of model architecture could be 
informative about how fruitful an exploration of the search 
space would be. Our results suggest that this variance is not 
substantial after an initial broad search that promotes a pre-
selection of HP sets.   

Although our model could decode subjective states from 
neural recordings, the accuracy was not as high as in other 
EEG-based paradigms, such as lateralized motor-imagery 
classification [24].  This may be due to i) the rapidly 
changing events of the virtual rides, ii) the participants’ 
retrieval of the corresponding emotional states from 
memory during the rating phase, iii) the variability of 
subjective reports in general [25], and/or iv) the one-trial 
study design and its relatively short time series.  

The modality of the model input (SSD, SPoC, various 
transformations such as the Hilbert transformation) did not 

Fig. 2 Prediction of subjective rating over the 270-s VR experience (two 
rollercoasters and the intermediate break), and learning progress of the 
best SSD dataset in the binary classification (BCT) (Subject 23, mean 
validation accuracy = 0.816): Concatenated prediction on the validation 
set over 10 folds (Top). Training progress over 810 iterations (Bottom).  
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significantly affect the model performance. This 
corroborates findings that deep learning models are effective 
function approximators [26]. Similarly, convolutional neural 
networks trained on EEG data approximate particular 
processes of features extractions for neural data [27].  

In future experiments, it should be tested whether our 
affective decoding model can also extract neural features 
across subjects. So far, we trained models on datasets of 
single subjects. Even though these datasets are relatively 
short, the LSTM was able to learn quickly and converged 
early in the training process (Fig. 2). This counters the 
often-stated drawback of deep learning models to require 
huge datasets, which lead to extensive training periods. 
Here, the benefit of LSTMs over other deep learning models 
is their fast gradient-flow through their memory cells during 
the weight-update [5]. Since this type of algorithm remains 
difficult to interpret, we only fed the model with signal 
features of interest (in this case: alpha-frequency 
components). In future work, this approach could be 
compared to an end-to-end learning (i.e., training the model 
on raw data). However, end-to-end learning could 
artificially increase or decrease the model performance due 
to systematic artifacts related to non-neural (e.g., muscular) 
activation. While profiting from the abilities of LSTMs and 
deep learning models in general, it is essential to 
simultaneously develop new methods for a better 
interpretation of their processes (cf. [28]), which would 
support training models on raw data. Ultimately, as the state 
of an agent is also a function of its environment, the 
integration of features of the (VR) stimulus itself into the 
model could be a crucial step towards a better understanding 
of the multifaceted phenomenon of arousal. 

 

V. CONCLUSION 
The subjective experience of EA has previously been 

linked to peripheral physiological states in an immersive VR 
experiment [3]. In a non-VR study with more simple 
stimuli, oscillations in the alpha frequency range (8-12 Hz) 
were found to decrease during higher arousal [4]. We 
combined both approaches, showing that subjective EA can 
be successfully predicted from alpha oscillations in a setup 
that measures EEG during an immersive VR experience.  

We conclude that LSTM RNNs can be used to decode 
subjective experience from neural information in naturalistic 
research designs. We hope that such stimulation combining 
immersive VR and neuroimaging may provide a tool to 
increase the ecological validity of neuroscientific 
experiments.  
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