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ABSTRACT

Emotional arousal is a key component of a user’s experience in
immersive virtual reality (VR). Subjective and highly dynamic in na-
ture, emotional arousal involves the whole body and particularly the
brain. However, it has been difficult to relate subjective emotional
arousal to an objective, neurophysiological marker—especially in
naturalistic settings. We tested the association between continuously
changing states of emotional arousal and oscillatory power in the
brain during a VR roller coaster experience. We used novel spatial
filtering approaches to predict self-reported emotional arousal from
the electroencephalogram (EEG) signal of 38 participants. Periods
of high vs. low emotional arousal could be classified with accuracies
significantly above chance level. Our results are consistent with prior
findings regarding emotional arousal in less naturalistic settings. We
demonstrate a new approach to decode states of subjective emotional
arousal from continuous EEG data in an immersive VR experience.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—HCI design and evaluation methods—Laboratory
experiments; Applied computing—Life and medical sciences—
Consumer health

1 INTRODUCTION

VR technologies allow to create highly immersive and contextually
rich scenarios. Their involving nature can evoke strong emotions in
the user of the VR system [4]. It is therefore of interest for devel-
opers and operators of VR applications to keep track of the user’s
continuously and individually fluctuating emotional states to ensure
the intended quality of the VR experience and the user’s well-being.
Objective measures that correlate with subjective emotional experi-
ence could be used to monitor the current (affective) state of the VR
user without interfering with her immersion into the virtual environ-
ment. Emotional arousal—a key component of subjective emotional
experience [10]—has recently been associated with changes in EEG-
derived alpha oscillations (8-12 Hz) in parietal cortex areas [7]. Here
we examined whether alpha power can be used to distinguish states
of high and low emotional arousal using continuous EEG signals
acquired during an immersive VR experience.

2 EXPERIMENTAL SETUP

38 healthy participants (20 females, age range 18-35) experienced
a 280s VR episode, consisting of two virtual roller coaster rides
(153 s and 97 s), separated by a 30 s break. The episodes were com-
mercially available [5] and presented on an HTC Vive head-mounted
display (HMD) while simultaneous EEG activity was recorded. To
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avoid signal disturbances, participants were instructed to keep their
head in a steady position, looking straight.

Then a playback of the recorded experience was presented on a vir-
tual 2D screen in the HMD. The replay served as a memory aid for
participants to remember how emotionally aroused they felt in each
single moment of the experience. A vertical rating bar displayed
next to the video allowed them to continuously report the recalled
level of emotional arousal by using a probe dial (Griffin PowerMate).

2.1 EEG measurements

30 channels of EEG activity were recorded in accordance with the
international 10/20-system using a mobile amplifier (LiveAmp) and
active electrodes (actiCap; both by BrainProducts, Germany). Two
additional channels of electrooculogram (EOG) allowed keeping
track of eye movements. Data were sampled with 500 Hz and refer-
enced to electrode FCz. The HMD was placed carefully on top of
the EEG cap before impedances were brought below 10 kQ.

2.2 Data Analysis

To exclude effects related to the on- or offset of the roller coast-
ers, the first and the last 2.5 s were removed from all data streams
recorded during the two roller coaster episodes. Combining these
with the intermediary 30s break resulted in time series of 270s
length which went into the analyses.

Behavioral arousal ratings Ratings were resampled to 1 Hz
by averaging non-overlapping sliding windows, yielding one arousal
value per second. To achieve distinct classes of arousal ratings
(low, medium, high) per participant, the set of all (second by second)
ratings in a given data set was divided into three equally sized subsets
by applying a tertile split.

EEG preprocessing EEG data were preprocessed and ana-
lyzed with custom MATLAB scripts building on EEGLAB tool-
box (v13.4.4b) [3]. Data were downsampled to 250 Hz and PREP
pipeline (v0.55.2) [1] default procedures were applied for high-pass
filtering (1 Hz, FIR filter), line-noise removal (50 Hz), robust refer-
encing to average, and detection as well as interpolation of noisy
channels. Subsequently, EOG activity was subtracted from the EEG
signal with a regression based approach [9]. To exclude artifact con-
taminated segments of the data, we applied an automatized rejection
criterion based on extraordinary bursts of variance in the signal.

Dimensionality reduction We used spatio-spectral decomposi-
tion (SSD) [8] and respective spatial filtering to extract 15 compo-
nents with maximal signal-to-noise ratio. To test our main hypothesis
that frequencies in the central alpha range allow the discrimination
between different states of arousal, we applied SSD with the signal
defined as the frequency band 10£2 Hz and the noise bands as the
neighboring spectra (6+1Hz and 14+1Hz). As a control and to
assess how much other frequency bands contribute to the classifica-
tion, we applied the same approach over a broad array of potential
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signal frequency bands (f; =2 Hz) surrounding the alpha range (f; €
{6, 8, 12, 14, 16, 18, 20, 22, 24, 28, 32}). Data of the extracted
components were either kept band-pass filtered around the signal
range (narrow band) or in a broad frequency range (5 to 35 Hz) in
order to allow multiple spectra to contribute to the classification
(broad band).

Feature extraction Using BCILAB (v1.4-devel) [6], we ap-
plied the common spatial patterns (CSP) [2] algorithm to extract
band-power based features from the signal. CSP specifies a set of
spatial filters to project the EEG data onto components whose band-
power maximally relates to the prevalence of one of two distinct
states (here: high vs. low emotional arousal). Data were epoched
in segments of 980 ms length, allowing a 20 ms window between
epochs to eliminate the possibility of overlap. A feature vector
with the logarithmized variance of the six most discriminative CSP
components (using three filters from each side of the eigenvalue
decomposition matrix) was extracted per epoch.

Classification  Fisher’s linear discriminant analysis (LDA) was
used as classifier. Validation and hyperparameter optimization (reg-
ularization of covariance matrices) were realized with a nested
(5x10), randomized cross-validation. Average classification rate for
the epochs of the validation sets of the outer loop was taken as the
outcome variable to assess the predictive quality of the model.

Benchmark To compare the classification performance to an
empirical baseline, we ran all approaches specified above on a copy
of the data set in which individual arousal ratings were replaced by
an uncorrelated rating template (sinusoidal curve with a wavelength
of 30 s oscillating between high and low arousal).

3 RESULTS

Behavioral rating results and an example of the clustering into
classes of high and low arousal are reported in Fig. 1(a-b). The aver-
age classification accuracy for the data set that was SSD-augmented
and narrow band filtered in the frequency range from 8 to 12 Hz
was 63.80% (SE = 0.99%). For the broad band filtered data (aug-
mented in the alpha range), the accuracy was 74.40% (SE = 1.50%).
The results for other signal frequencies f; are depicted in Fig. 1(c).
Excluding the break from the analysis did not change the results.
Models which were calculated by using the artificial rating template
did not perform significantly better than chance level. Fig. 1(c)
shows averages of the spatial pattern weights over all participants
for two representative frequency bands. If the central alpha band
(8-12Hz) was targeted (blue boxes), the patterns show a strong
temporo-parietal component. Patterns for an exemplary higher fre-
quency band (brown boxes) exhibit a ring-shaped topography along
the borders of the cap, thus indicating the presence of artifactual
EEG components.

4 CONCLUSION

Our results show that it is possible to predict subjective emotional
arousal during a VR experience from brain activity. In particular, we
could discriminate periods of high and low emotional arousal with
above-chance accuracy using a spatial and spectral decomposition
of the EEG signal. In accordance with prior findings [7], an increase
in emotional arousal was associated with desynchronization of alpha
oscillations in temporo-parietal areas. The prediction accuracy could
be further increased when the analysis included or focused on higher
frequency ranges, but the corresponding topographies suggested that
confounding non-neuronal sources might have driven the classifica-
tion in these parts of the spectrum. If the aim is to learn about the
brain’s processing of emotional arousal or to provide an interface
that most widely relies on neuronal activity, our results indicate that
oscillatory power in the high alpha and low beta range, particularly
in temporo-parietal areas, might be the most promising marker.
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Figure 1: (1a-b) Time series of rating data. (1a) Ratings of all sub-
jects with their average plotted in black. Selected events during the
experience are marked by dotted vertical lines. (1b) Exemplary rating
from a single participant and clustering into epochs of high (orange)
and low arousal (blue). (1c) Average classification accuracies for
narrow and broad band approaches (mean+1SE). Grayed-out boxes
represent the results for models in which the ratings were replaced
with an uncorrelated template (uninformed benchmark). Red lines
indicate chance level (solid) and 95% confidence interval (dashed).
Very right: Average spatial activation patterns (normalized) of the two
most discriminative components (SSD+CSP) for models trained on
different signal frequencies.

ACKNOWLEDGMENTS

Thanks to Mert Akbal, Nicolas Endres, Cade McCall, and Firat
Sansal for substantial ground work and their contributions to the
experimental paradigm.

REFERENCES

[1] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, and K. A. Robbins.
The PREP pipeline: standardized preprocessing for large-scale EEG
analysis. Frontiers in Neuroinformatics, 9:1-20, 2015. doi: 10.3389/
fninf.2015.00016

[2] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Miiller.
Optimizing spatial filters for robust EEG single-trial analysis. IEEE
Signal Processing Magazine, 25(1):41-56, 2008. doi: 10.1109/MSP.
2008.4408441

[3] A.Delorme and S. Makeig. EEGLAB: an open sorce toolbox for anal-
ysis of single-trail EEG dynamics including independent component
anlaysis. Journal of Neuroscience Methods, 134:9-21, 2004. doi: 10.
1016/j.jneumeth.2003.10.009

[4] J. Diemer, G. W. Alpers, H. M. Peperkorn, Y. Shiban, and
A. Miihlberger. The impact of perception and presence on emotional re-
actions: A review of research in virtual reality. Frontiers in Psychology,
6:1-9, 2015. doi: 10.3389/fpsyg.2015.00026

[5] Funny Twins Games. Russian VR
http://store.steampowered.com, 2016.

[6] C. A. Kothe and S. Makeig. BCILAB: a platform for brain—-computer
interface development. Journal of neural engineering, 10(5):056014,
2013. doi: 10.1088/1741-2560/10/5/056014

[7]1 C.D. B. Luft and J. Bhattacharya. Aroused with heart: Modulation of
heartbeat evoked potential by arousal induction and its oscillatory cor-
relates. Scientific Reports, 5(1):15717, 2015. doi: 10.1038/srep15717

[8] V. V. Nikulin, G. Nolte, and G. Curio. A novel method for reliable
and fast extraction of neuronal EEG/MEG oscillations on the basis of
spatio-spectral decomposition. NeuroImage, 55(4):1528-1535, 2011.
doi: 10.1016/j.neuroimage.2011.01.057

[9] L. C. Parra, C. D. Spence, A. D. Gerson, and P. Sajda. Recipes for the
linear analysis of EEG. Neurolmage, 28(2):326-341, 2005. doi: 10.
1016/j.neuroimage.2005.05.032

[10] J. A. Russell and L. F. Barrett. Core affect, prototypical emotional
episodes, and other things called emotion: dissecting the elephant.
Journal of personality and social psychology, 76(5):805-819, 1999.

coasters.



		2018-08-22T16:42:10-0400
	Preflight Ticket Signature




