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ABSTRACT

This article explains the new features of the Excite-O-Meter, an
open-source tool that enables the collection of bodily data, real-
time feature extraction, and post-session data visualization in any
custom VR environment developed in Unity. Besides analyzing
heart activity, the tool supports now multidimensional time series
to study motion trajectories in VR. The paper presents the main
functionalities and discusses the relevance of the tool for behavioral
and psychophysiological research.

Index Terms: Human-centered computingInteractive systems and
tools; Human-centered computingVirtual reality; Computer systems
organizationReal-time system architecture

1 INTRODUCTION

A primary goal of VR is to create relevant and engaging experiences.
However, humans differ and do not experience VR content in the
same way. How can we know what users find relevant and engaging?
Collecting user ratings (e.g., about their current affective state) has
disadvantages: Self reports require users to distract their attention
from the experience itself (potentially interrupting immersion), they
are typically non-continuous and thus have low sampling frequen-
cies, and they are prone to biases (e.g., distortions when reporting in
retrospect, in summary, or from a third-person perspective). Bodily
(i.e., physiological) signals and movement data (e.g., head, limb,
eye movement) are relatively unobtrusive and continuous measures,
which can be analyzed to adapt and optimize VR content.

For “internal” bodily signals, one can use commercially avail-
able digital health sensors, such as chest straps to record cardiac
activity. Data about head and some other bodily movements (e.g.,
controller/hand) are automatically recorded by VR systems. Other
modalities (e.g., leg or eye movements) typically require additional
hardware. Such “internal” and “external” body dynamics can be used
to study the relationship between audiovisual stimuli and human
behavior in controlled virtual scenarios. In addition, the construction
of interactive VR environments is easier than ever before, for exam-
ple with authoring software such as the game engine Unity [12]),
which minimizes the technical knowledge required to design 3D
environments and execute them in VR headsets.

Although game engines streamlined VR development, challenges
remain to transform any virtual environment into a platform to study

*e-mail: luis-eduardo@dsv.su.se
†e-mail: panagiotis@dsv.su.se
‡e-mail: john.munoz.hci@uwaterloo.ca
§e-mail: jeroen@the1stfloor.net
¶e-mail: gaebler@cbs.mpg.de

human behavior. For example, researchers or game developers could
create custom VR environments with predefined stories and inter-
actions. However, conducting behavioral analysis with participants
or users demands time and technical knowledge to implement addi-
tional functionalities to connect external body sensors, continuously
and reliably log data, and synchronize the stimuli and responses. An-
other option would be to acquire commercial licenses that facilitate
these operations, but they might be expensive or incompatible with
already developed VR applications.

The Excite-O-Meter [8] is an open-source software framework
that solves these technical obstacles. It enhances any custom desktop
VR application with extra functionalities for behavioral analysis;
such as incorporating bodily data, extracting features in real-time,
and conducting a post-session review of the user’s interactions. The
initial version of the tool supported unidimensional time series and
was specifically designed to study the heartbeat-related (i.e., heart
rate and heart rate variability, HRV) responses from people inter-
acting with a VR application. The initial validation used cardiac
information in a rule-based model to estimate the continuous “excite-
ment level” elicited by a virtual environment. The tool has evolved,
and the new features include better compatibility with the latest ver-
sions of Unity and, more importantly, support for multidimensional
time-series data to analyze movement trajectories in VR.

Introducing movement analysis to the Excite-O-Meter is a sub-
stantial extension to the framework for three reasons. First, move-
ment is a confounding variable for heart rate and HRV as movement
intensity affects the user’s physiological response levels, and analyz-
ing only cardiac data could hamper other factors that can measure
users’ behavior (e.g., “excitement”). Therefore, jointly analyzing
movement and heart activity allows for more valid behavioral met-
rics derived from multiple relevant data sources. Second, movement
by itself is an indicator of psychological and emotional processes.
Body expression has been found as informative as facial expressions
in conveying affective states [4], and machine learning algorithms
can recognize emotional states from body postures [5]. Lastly, VR
systems contain sensors to accurately track motion from head and
hands, becoming a suitable test bed to study relationships between
human factors and movement trajectories [7].

Related work: Other tools also attempt to simplify behavioral
research in VR, but they meet different requirements. For instance,
commercial solutions1 may be expensive and restrictive for smaller
projects. A free package called UXF [1] can efficiently log Unity
data but does not integrate external body sensors. Other software for
experimental research, such as PsychoXR [2], can handle data from
external sensors but cannot be integrated in Unity. Therefore, we
consider the Excite-O-Meter a complementary - and for certain
use cases preferable - solution that can alleviate technical obstacles,
is easily adaptable to existing Unity projects, without requiring
coding skills, and enables feature extraction and data visualization.

1E.g., https://cognitive3d.com/ or https://silicolabs.ca/experimenter
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2 NEW FEATURES IN THE Excite-O-Meter

From the technical standpoint, the Excite-O-Meter [8] can incor-
porate bodily data from any sensors compatible with Lab Streaming
Layer (LSL). The first version of the tool included heart activity
measurements from the chest strap Polar H10. These cardiac data
were all processed as unidimensional streams, which was insufficient
for more complex sources (e.g., movement, brain activity).

Data collection: The major new feature is the support for multi-
dimensional time series to track movement from any object in the
Unity scene. The logged data include position in 3D space, and
rotation in both quaternions and Euler representations (previous
studies have shown that redundancy in the rotation representation
could benefit behavioral analysis [9]). The data is processed using
left-hand coordinate system, as in Unity. A convenient object to be
tracked is the VR headset, which enables the analysis of user’s field
of view. In addition, the sampling frequency of the movement can
be easily configured from the control panel, as depicted in Figure 1.

Feature extraction: This module calculates velocity and acceler-
ation trajectories in real-time from the movement data stream. By
default, the features are extracted using a buffer of three samples
with one overlapping sample between calculations. The formulas
for these features differ among rotation representations. Specifically,
calculating velocity and acceleration for quaternions involve the
Hamilton product between a quaternion q and its complex conjugate
q̄ with inverted non-real dimensions (see equations 16-17 in [11]),
whereas for Euler angles it accounts for the discontinuity caused by
0°=360° (see equation 17 in [3]). These and other cardiac features
can be manually altered from a json file, to trigger the calculation
by number of samples in the buffer or by a specific elapsed time.

Session data structure: A data collection session generates a
folder with a predefined structure. The screenshots displaying
the user’s field of view are stored as jpg images in the folder
screenshots/. Multiple time-series csv files are stored that cor-
respond to raw heart activity (hr, rri), multidimensional move-
ment trajectories (movHeadset), extracted features from heart
(RMSSD, SDNN) and movement (movHeadsetFeatures). The file
eventsAndMarkers.csv may be used to segment the behavioral
data according to the timestamp of each experimental stage (e.g.,
baseline, intervention, or breaks).

Offline data visualizer: This module lets any desktop VR applica-
tion visualize synchronously the user’s field of view, heart activity,
and (e.g., headset) movement trajectories, as shown in Figure 2.

Unity compatibility: Finally, the tool was updated to guarantee
compatibility with the game engine. The repository includes an
example tested in Unity 2020.3 using Universal Rendering Pipeline
(URP), the new input system (v1.2), and OpenXR runtime to assure
execution in any desktop VR headset. The links at the end of the
paper refer to the instructions and documentation for all features.

Figure 1: Control panel to configure the acquisition of behavioral data,
choose whether movement data and screenshots should be captured.
This panel superimposes the computer screen in any VR application.

Figure 2: The tool displaying a user’s field-of-view (screenshot), heart
rate, and movement (quaternion) at second 30 of an example session.

3 DISCUSSION

This paper outlined the new capabilities of the Excite-O-Meter to
handle multidimensional time-series such as VR headset movement
trajectories, in addition to the heart activity from wearables. In the
future, more complex bodily time-series from the “internal” and
“external” body can be integrated, such as brain activity or hand
motion trajectories, respectively. Also, we envision this tool as a
free and lively growing platform to facilitate empirical behavioral
and psychophysiological experiments for researchers. Being an
open-source project may also streamline the creation of larger public
datasets to train machine-learning methods that help interpreting
user behavior in VR [10]. Such an open-science ecosystem would
ultimately also benefit VR-based solutions in healthcare, education,
or training - augmenting them with computational systems that can
estimate human cognitive and affective factors [6].
Availability: At https://exciteometer.eu/ or open-source
code at https://github.com/luiseduve/exciteometer/.
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